Understanding Neural Network
In Geometric Metrics

Which geometric properties result in powerful neural networks
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Analyzing NN

o Traditional methods mostly rely on performance metrics.
o Accuracy, Precision, & Recall

o« We can’t visually analyze Neural Networks because they are large.
o But Graph Metrics provide information about graphs without having
to visualizing them.



Phase 3: Baselines with Benchmarks

- we use seven models to evaluate their performance on benchmark

Model/Dataset
CNN
ThreshNet
TripleNet
EfficientNet
AlexNet
ResNet101
MLP

Model/Dataset
CNN
ThreshNet
TripleNet
EfficientNet
AlexNet
ResNet101
MLP

Cifar10
86.90%
86.
86.66%
94.78%
76.25%
99.19%
41.62%

Cifar100

SVHN

96.80%
94.51%
94.46%
96.40%
91.76%
98.39%
29.67%

Table 2. Topl Accuracy Rates

Cifar10
29s

32s

458
133s
587s
360s
105s

Table 3. Total Time Per Epoch

Cifar100
38s

32s

47s

134s
593s
1100s
106s

SVHN
37s
51s
70s
193s
8s
186s
168s

classification datasets, including Cifar10, Cifar100, SVHN, and STL-10.

STL-10 T —
68.12% . )
76.52%
76.72%
91.49%
59.78%
98.98%
27.31%




Datasets
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CIFAR-10: 10 classes 32x32 CIFAR-100: 100 classes, 600 ~ SVHN: 10 classes, 96x96 STL10: 10 classes, 96x96
pixels, colors, 60000 images images, Like the CIFAR-10 pixels, color, 100000 images pixels, color, 100000 images

https://cs.stanford.edu/~acoates/st|10/


https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/

Relational Graph
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Nodes — patterns
Edges — relations




Metrics

Average clustering coefficient

Average shortest path length

Density

Betweenness Centrality

Closeness Centrality

https://networkx.org/documentation

The average number of steps along the shortest paths for all pairs
of nodes:

_ 3 X number of triangles
" total number of possible triangles

The average number of steps along the shortest paths for all possible pairs of
network nodes:

1
) — — - o
C(v) = (_”_1.)21‘,“,& d(u,v)

The ratio between the edges present in a graph and the maximum number of edges:
2|E|

:n(n—l)

Quantifies how often a node acts as a bridge along the shortest
path between two other nodes:

B(v) = Z ”S;i”)

UFVEV

Measures how close a node is to all other nodes in the graph:
1

Ge(n) = Zouzvey AW, V)




Graph2nn
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Input Layer

Multilayer Perceptron (ML

Hidden Layers

while True:

ex_layers = random.randint(4,7)

max_layer_nodes
min_layer_nodes

nodes1 = random.
nodes2 = random.
nodes3 = random.

nodes4 = @
nodes5 = @
nodes6 = @

#https://scikit-

= 708 - 50*ex_layers
=160

randint(min_layer_nodes, max_layer nodes)

randint(min_layer_nodes, max_layer nodes)
randint(min_layer_nodes, max_layer nodes)

learn.org/stable/modules/neural_networks_supervised.html

from sklearn.neural_network import MLPClassifier
clf = MLPClassifier(solver="adam’, alpha=le-4, hidden_layer sizes=(nodesl, nodes2, nodes3), random state=1, max_iter=20@, verbose=True)

if ex_layers ==

53

nodes4 = random.randint(min_layer nodes, max_layer nodes)
clf = MLPClassifier(solver="adam’, alpha=le-4, hidden layer_sizes=(nodesl, nodes2, nodes3, nodes4), random state=1, max_iter=200, verbose=True)

if ex_layers ==

6:

nodes4 = random.randint(min_layer nodes, max_layer_nodes)
nodes5 = random.randint(min_layer nodes, max_layer nodes)
clf = MLPClassifier(solver="adam’, alpha=le-4, hidden layer_sizes=(nodesl, nodes2, nodes3, nodes4, nodes5), random_state=1, max_iter=288, verbose=True)

if ex_layers ==

nodes4 = random.randint(min_layer nodes, max_layer nodes)
nodes5 = random.randint(min_layer nodes, max_layer nodes)
nodesé = random.randint(min_layer_nodes, max_layer_nodes)
clf = MLPClassifier(solver="adam’, alpha=le-4, hidden layer_sizes=(nodesl, nodes2, nodes3, nodes4, nodes5, nodesé), random_state=1, max_iter=208, verbose=True)

print("Nodes: ",

nodes1, nodes2, nodes3, nodes4, nodes5, nodes6)

clf . fit(x_train_f, y_train)



Analysis Metrics




Analysis Metrics

Accuracy

Accuracy Accuracy

Accuracy Accuracy

Betweenness

Betweenness

Betweenness




7 =- Im(Accuracy -~ Layerl + Layer2 + Layer3 + Layerd + Layer5 + Layerég

s s . 6*samples, replace=TRUE
df =- data.frame(matrix(nums, nrow=samples
p <- predict(m?, df

Density Betweenness Closeness

Layerl Layer2 Layer3 Layerd Layers Layert Pred Accuracy L
: 74 52 10 0.4960 0.4606 2.1357 0.1378 0.0003 0.4887

316 329 348
302 53 350 93 - 214 0.4733 0.4704 2.4473 0.1214 0.0003 0.4349
176 327 63 i) 319 0.4783 0.4587 2.6146 0.0793 0.0004 0.4074

Steps:
1) Use R to generate a linear model
2) Use linear model to predict good classifier architecture

3) Test predicted classifier architecture
2) Go to 1) with more results data (reinforcement learning)



Conclusion

Effectively found a good MLP architecture for classification of Cifar10.
Individual graph metrics are marginally useful.

Using multiple graph metrics provide more insights compared to
individual metrics for MLP.

Using random number of layers for MLP to find diverse group of Graph
metrics.

Using statistical analysis.



Future Work

Translate more complex Neural Networks into Graphs.

Experiment with ML models to predict NN accuracy from Graph
Metrics.

Overcome limitations of MLP.



Thank you
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